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Mean first-passage time for an overdamped patrticle in a disordered force field

S. I. DenisoV
Department of Mechanics and Mathematics, Sumy State University, 2, Rimskiy-Korsakov Street, 40007 Sumy, Ukraine

Werner HorsthemKe
Department of Chemistry, Southern Methodist University, Dallas, Texas 752718
(Received 18 April 2000

We derive a rigorous expression for the mean first-passage time of an overdamped particle subject to a
constant bias in a force field with quenched disorder. Depending on the statistics of the disorder, the disorder-
averaged mean first-passage time can undergo a transition from an infinite value for small bias to a finite value
for large bias. This corresponds to a depinning transition of the particle. We obtain exact values for the
depinning threshold for Gaussian disorder and also for a class of piecewise constant random forces, which we
call generalized kangaroo disorder. For Gaussian disorder, we investigate how the correlations of the random
force field affect the average motion of the particle. For kangaroo disorder, we apply the general results for the
depinning transition to two specific examples, viz., dichotomous disorder and random fractal disorder.

PACS numbgs): 05.40-a, 05.10.Gg, 05.45.Df

[. INTRODUCTION specifically how the functional form of the disorder correla-
tions effects the depinning transition. We then focus on a
The motion of an overdamped particle in a potential mod-class of non-Gaussian random forces for which the depin-
els a broad variety of transport phenomena in physicalfing transition can be characterized analytically.
chemical, and biological systems. Ratchetlike mechanisms, Earlier publications considered mainly spatially discrete
the motion of a particle in an asymmetric periodic potential,Situations, where the particle moves on a latfisel0-14.
have been proposed to explain the transport of large mollhe dynamics of the particle is described by a random walk
ecules in cells and through membrarigés The asymmetric  With random hopping rates. We adopt a spatially continuous
potential can rectify symmetric nonequilibrium fluctuations, description in terms of a Langevin equation with quenched
and give rise to fluctuation-induced transpi@}, which may  disorder forces. This point of view is better suited to situa-
be used for the continuous sorting of macromolec(igls tions where the disorder force field, or disorder potential, is
The transport properties are strongly perturbed by the pregvell characterized, and hopping rates are a derivative quan-
ence of frozen disorder or defects in the ratchet potefttial ~ tity. Studies of random walks in random medi2—14 and
The motion of an overdamped particle in a nonperiodic dis©f Langevin equations with quenched disord15-17
order potential is of interest in its own right. It provides a have shown that the mean first-passage time formalism is an
model for the dynamics of dislocations in solids and of do_effective tool to characterize the depinning transition. This
main walls in random-field magnets, for diffusion of test formalism has the advantage that it does not rely on the
particles in porous media or turbulent flows, for electronicPeriodic continuation of the random potential used in
transport in amorphous media, and for other transport phe{-7,11,1a-
nomena in random medi@,6]. It has also been used as a We consider a one-dimensional disorder potential. The
simple phenomenological model of glassy dynanfi8]. equation of motion of an overdamped particle with coordi-
A distinctive feature of the dynamics in systems with ran-nate x in the presence of a random potentla(x) and a
dom potentials, or quenched disorder, is the existence of thgonstant external forckis given by the Langevin equation
depinning transition. For certain statistics of the quenched
disorder, the particle on average does not move below a X(t)=g(x(t))+f+ (1), (1.7
threshold value of the external driving force, whereas it

moves for a force above this value. In this paper, we studyyhereg(x) = —dU(x)/dx. Without restriction of generality,
how thermal fluctuations interact with various types of e consider to be positive, i.e., the particle is driven to the
quenched disorder, and derive expressions for the depinningynt. The quenched disorder is described by the random
threshold. The effects of randomness in driven systems aigce g(x), which we assume to be a homogeneous, i.e.,
often nonintuitive, and it is therefore desirable to i”VEStigatecransIationally invariant, random function with mean value
model systems for which exact analytical results can be obygrq
tained. Previous studies investigated the motion of an over-
damped particle in the presence of a Gaussian disorder po-

tential [7,9]. We extend those studies by exploring 9(x)=0, 1.2

and correlation functiom(u),
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wit_h r(O_)>O andr(«)=0. Here the over_bar denotes aver- X(0,1)=g(w,x(1)+ f+ 7(t) 2.1)
aging with respect to the random force figl¢x). The defi-
nition of g(x) implies that is a Markovian diffusion process. Letw,x) be the time that
a particle starting ax(w,0)=x with as<x=<b leaves the in-
y A ) S
U(y)—U(x)z—f g(s)ds (1.4)  terval (a,b) for the first time. For a given realization of
x the random force, the mean first-passage timgo,x)

=(t(w,X)) obeys the equatiofl9,20

and
e . dT(w,x) AdZT(w,x) B
U -ur- | aseds [0+ +a 00 o1 (22
y (Y Since we are interested in the time when the particle reaches
j J r(s—v)dsdv the upper boundar of the interval for the first time, no

matter how often it has reached the lower boundaryve
ly—x] considerb to be an absorbing barrier amdo be a reflecting
:Zjo r(wlly—x|-uldu. (1.9  parrier. The solution of Eq2.2) with these boundary condi-
tions is given by[20]
Defining the correlator of the potential as usual Kyz)

=[U(z+x)~U(x)1’=[U(2) - U(0)T2, we obtain T(w.x)= f o j W2dz a<b, (2.3
|2l
K(z)zzfO r(w[|z]—uldu. (1.8)  \where
Note that the potentidU(x), as an integral over a homoge- _ E fy
neous random force, is itself not a homogeneous random vly)=ex A a[f+g(w,§)]d§ ' 24

function. The probability density of the random forgéx)
will be specified below. The particle is subject not only to As mentioned in Sec. I, in our cabe=L anda= —o. Equa-
spatial random disorder, but also to temporal random noisédion (2.3 remains valid as goes to—c, provided that-« is

We assumey(t) to be Gaussian white noise, a natural boundarjy21] of the Markovian diffusion process
X(w,t) [19]. A diffusion process reaches a natural boundary
(n(1))=0, (1.7)  with probability zero, even if time goes to infinity. A natural
boundary has no effect on the mean first-passage time, and
(n(O)n(t"))=2A8(t—t"), (1.8 the result obtained for the depinning threshold is free of

finite-size effects.

where §(t) is the & function, and( ) denotes averaging with The boundana= — is natural, if[21]

respect to the noisey(t). If the noise represents thermal

equilibrium fluctuations, the white noise intensityis equal 8

to the absolute temperature of the heat bath. Ll(—OO)=J P(X)dx=00, (2.9
We characterize the dynamical behavior of the particle by o

the disorder-averaged mean first-passage tie(t(0)), \yhere

wheret(0) is the time a patrticle starting a{0)=0 spends

in the interval (~,L) before reaching the positidn>0 for 1 (x

the first time, i.e.£(0) is the so-called first-passage time. We ¢(X)=eXP[ - Kf [f+9(w,2)]d2}- (2.6

choose the lower boundary to be at minus infinity to avoid A

finite-size effects, and to obtain the depinning threshold 'q:rom Eq.(2.6) we obtain

the thermodynamic limit. The depinning transition corre-

sponds to the transition from=c to T<eo. f
This paper is organized as follows. We derive the general ¢(x)= p[—(ﬂ X) f( %) f J(w,z)dz ] 2.7
expression for the mean first passage tima Sec. Il. The ﬁ

role of the functional form of the correlations for the case of
and therefore
Gaussian disorder is analyzed in Sec. Ill. We consider gen-
eralizations of the kangaroo process, i.e., stepwise constapt., OHLy(— o) =00}
- . s 1
random forces, and derive analytical results for the depinning

transition in Sec. IV. We conclude with a discussion of our
results in Sec. V. =Pro I|m f(ﬂ x)f 9(w,2)dz|=0}. (2.8
X— —
Il. MEAN FIRST-PASSAGE TIME Let us define the random variab®&(x; 8) as
We denote a realization, or sample path, of the random 1 5
force g(x) by w: g(w,x). The solution of the Langevin G(x;B)= f 9(w,z)dz (2.9
equation ' B—X Jx ’
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The strong law of large numbef82] implies that T=T(w,0)
lim G(x;8)=g(z)=0 (almostsurely, (2.10 1L o
X —c0 =—f dyf dxexp —x)
if and only if T
lim G(T,B)ZZO. 2.1 Xexp[—?Jl)g(w,(A/f)§+y—(A/f)x)d4, (2.18
X— —
Since Since g(x) is a homogeneous random function, the mean

first-passage time can be written as

1
G(x;8)=—=——[U(x)—U(B)], (2.12 o X
P ﬂ—X[ ( A)] T=T0f dxexr(—x)exp{—%fg(Ag/f)d{), (2.19
0 0

Eqg. (2.1)) is equivalent to
where we have dropped the argumentandT,=L/f is the

l K(B—x)=0. 21 mean first-passage time fg(x)=0. The Jensen inequality
Xln_}x (B—x)? (B=x) .13 [23] [see also Eq4.18)], implies that
If the correlator of the potential is given by a power law, i.e., 1 (x
K(z)~z” for z—x, then the boundara=— is natural ex ——f g(Ag/f)d¢

and Eq.(2.3 holds, if y<2. Defining the correlation length
\ of the random force(x) in the usual way,

>exp[—%J'xg(A§/f)d§]=l. (2.20
0
r(O)f [r(u)|du, (2.19

ThereforeT=T,, i.e., quenched disorder always increases
the mean first-passage time.

Finally, using the transformations of variablgs-fz/A
andé=A¢/f in Eqg.(2.19, we obtain the general expression

we find that a finite correlation length of the disorder force is
a sufficient, although not necessary, conditionder —« to

be natural. , i
From Eq.(2.3 we obtain for the mean first-passage time:
O—l I_d L f d T—Lfmd f 1fz d 2.2
T(o, )—Zfo y ex _Kﬁx[ +9(w,§)]dé =3 ), 9788 —xz|em —x 09(5) § (221
y 1 [z or
xf dzex Kf [f+0(w,&)]dé
1L (v f =—Jdp< )p{u UO}Z.Z
:_def dzexp{__(y_z) zex exp 1 [U(2-U(0)]}. (222
A Jo e A
1 (v This result is equivalent to the expression for the inverse of
-— J g(w g)dg] (2.15 the disorder-averaged velocity in RET] and agrees with the
result for the mean first-passage time in Héi.

To conclude this section, we derive the condition that the

Using the transformation of variables=(f/A)(y -2), we mean first-passage time is self-averaging in the largmit,

find i.e., that the disorder average is representative for a single
1 (y realization of the quenched disorder. From Exj16) for the
T(w,00= f dyJ dxexp{ —X— A g(w,g)dg), mean first-passage time for a given realization of the
y=(arf)x quenched disorder, we obtain
(2.16
L (> f
and with {=(f/A)(£—y)+X, T(0=% fo dzexp( - K2><I>(w,z;L), (2.23

T(w,00= f dyf dxexp{ —x——f g(w,(A/f)¢ where

1t 1y
+y—(A/f)x)d§]. (2.17) <D(w,Z:L)=[deyeXP|—K y_zg(w.g)dg). (2.24

Averaging over the disorder, we obtain the mean first-Comparing Egs(2.23 and (2.21), we find thatT(w,0) is
passage time self-averaging, and that the intensive quarifify,0)/L goes
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to the constanfl/L almost surely ad goes to infinity, if We have
®(w,z;L) is a self-averaging function, i.e., if

1 (L L
lim ®(w,z;L) <I>2(w.z;L)=Ff0 dyfody’eXF[G(w,y,y’,Z)], (2.27

L—o

where

—exp[ ——j g(w §)d§} (almost surely.

2.2 , 1 (y 1 [y

229 Gwyyo=-3 [ swedeg [ g
[Recall thatg(x) is a homogeneous random functipithe e o (2.28
strong law of large numberf22] implies that Eq.(2.25 '

holds, if and only if If the random force field has a finite correlation length, then

the dominant contribution to the integral on the right-hand

2
lim ®2(w,z:L)= ( exp[ — i Jy g(w,g)dg] ) . (2.2  side of Eq(2.27) comes from regions where the two terms in
Aly-z G(w,y,Y',z) are uncorrelated. Therefore

Lo

lim ®%(w,z;L)=lim — | dy| d -— )d -— d
L'inw (w,z;L) L[nm yf yexp{ f g(w,$) §} exv[ f g(w,$) 5}

1 [y
- ( exp{ -3 g(w,§>d§]> , (229
y—z

correlation length is a sufficient condition fai ,0) to be T=
self-averaging, but not a necessary condition as we will show
explicitly for Gaussian disorder at the end of Sec. Ill.

L fw p{ foo1 }
=— | dzexp ——-z+—K(2)¢. (3.9
lll. GAUSSIAN DISORDER AJo AT 242

As a first application of Eq(2.21), we consider the case According to Eqgs.(3.3 and (3.4), the mean first-passage
of Gaussian disorder. The evaluation of the average is facilitime is finite, i.e., no pinning occurs, if

tated by the following relation. I6(x) is a Gaussian random
function, then

and the mean first-passage time is self-averaging. A finite L (e f 1 rz
—f dzex ——z+—f dvr(v)(z—v) (3.3

1z 1
fA>lim —f dvr(v)(z—v)=Ilim —=K(z). (3.5
Z—®© z 0 Z— 0 22
exp{G(x)}=exp{(1/2)G(x)?}. (3.1
SinceK(z)=0, the following cases are possible.

1) If lim K(2)/2z=, thenT=< for anyf. The par-
The integral of a Gaussian random function is itself Gauss- @) 2K (2) * . 4 P
ian, and ticle is always pinned, no matter how large the driving force

f.
(2 If lim, _K(2)/2z=x(0<x<w), then T= for f

T o <x/A, and T<o for f>yx/A. The particle experiences a
EXW’ J’ 9 f)dg} exp{ J ng de'g(og(¢’ )} depinning transition with the threshold valfig= x/A. If f

=x/A, then the mean first-passage time will be finite or
1 (z infinite, depending on the form of the second term in the
=exp{ f dor(v)(z U)] asymptotic expansion d{(z).
(3 Iflim__ K(z)/2z=0, thenT< for anyf. The par-

1 ticle will always move, even for a small but nonvanishin
=exp{—K(z)] 3.2 y g

driving forcef.
To understand the physical significance of these three
cases, we determine the functional form of the correlation
Thus, for Gaussian disorder, the mean first-passage time fanctionr (u) that gives rise to each case. Sicg) =0, the
given by functionr (u) must satisfy the inequality
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ur(u)du (3.6)  forcef, unless regions of positive and negative correlations
in the force field are exactly balanced. In the latter case, the
particle will move for any nonvanishing driving force.

The first case, wher®=o, corresponds to a power-law

z 1z transition occurs at a finite threshold value for the driving
J r(u)du;;j

0 0

for anyz=0. This inequality implies that

o behavior for the correlator of the potenti#(z) ~z” asz
R= fo r(uydu=0. (3.7 o with 1<5<2, since
We begin by considering the case when the correlation func- K(z)~zfzr(u)du, (3.13
Cc

tion of the random force fieldj(x) decays monotonically

with distance. Ifr (u)=0 for u=0, then andr(«)=0. Thus the boundary at minus infinity is, as re-

1 (z a(z) (z quired, a natural boundary. For the second case, where 0
—J ur(u)du= TJ r(u)du, (3.8 <R<w, we findK(z)=2zRasz— =, or »=1. This case is
realized for a broad class of random forggx) that have a
finite correlation length. In particular, the Sinai model, where

. . . the potential is a Wiener process and the random force field
I_n this ~ case, . |Ir‘9ﬂwK(Z)/22—OO i ) R=, and is 5<F:)orrelated, belongs tor'zhis class. For the third case, where
lim, K(z)/2z=x if R=x. Indeed, according to Eql.6)  R—( e obtainy<1. This case is realized for the class of
and(3.8), we have random forcegy(x) that have a finite correlation length and
satisfy the conditiorR=0. A specific example is a random

0 0

where 0<a(z)<z, and inequality(3.6) is always satisfied.

K(z a(z z i i i i
(2 [, a2 f f(u)du. 3.9 force fieldg(x) with the correlation function
2z z 0
1 (k—2)uls
since 0<a(z)<z it follows that lim__K(z)/2z=o if (W= = e 314

R=o. If 0<R<x, then Iimuﬁwur(u)zo,
Here 6 is a parameter that has the dimension of length, and

1 (2 k>2. The conditionk>2 follows from the conditiom <.
lim —J ur(u)du=0, (3.10 For random forces with correlation functions of this form,

2o £ J0 we obtain
and IimZ_mK(z)/22= R. Note that forr (u)=0 the third case 1 1
is not realized. K(z)=26%(0) —3 1- 3

. . . (1+2/6)

We now consider the case that the correlations in the ran-
dom force field decay in an oscillatory manner. We limit our 1 1
study to those situations where the correlation functigun) -——5|1- = } (3.195
does not exhibit further sign changes beyond a certain dis- k=2 (1+2/6)"
tance c>0. As for monotonically decreasing correlation it k£3. and
functions, the first case is realizedRf=. Since '
z z —252 _

%Zz)zfor(u)du—éfour(u)du K(z)=26°T(0)| In(1+2/6)+ 1523 1| (3.19

if k=3. Equation(3.15 shows that»=0 for >3, and

_(° 1 b(2)} (= n=3—« for 2<x<3. If k=3, then the correlator diverges
for(u)du z four(u)dw == )Lr(“)d”’ logarithmically: K (z) ~ In(z/8) asz/ .
(3.19) Note that for Gaussian disorder with a finite correlation
: length, the particle is always pinned in the absence of ther-
wherec<b(z)<z, and since the conditioR= implies mal noise. Thg cgrtain pinning in a noiselgss system is
caused by realizations witg(w,x’ (w))=—f with X' ()
o e (0,L), which occur with nonzero probability. For such re-
fc r(uydu=-co, (312  alizations, the disorder force overcomes the external bias

force, and the particle will be trapped, if the noise intenaity

we obtain lim _K(z)/2z=, neglecting the first two terms ya_ni_shes. Therefo_re th_e mean first-passage time is_ always

in Eq. (3.11) f;swz_m If 0<R<c, then lim _ur(u)=0 |nf|n_|te_for Gau§§|an d|sorde_r in the absence of noise; no

N ' - u—o ' depinning transition occurs without the help of the temporal

Eq. (3.10 holds, and therefore lim _K(z)/2z=R. noise. For finite noise intensity and Gaussian disorder with a
These results show that for a Gaussian random force fieltinite correlation length, the depinning transition occurs at

whose correlation function either decreases monotonically of = f., where

does not change sign beyond sonie0, the particle is al-

ways pinned, if the correlation length of the quenched disor- fe=RIA. (3.1

der is infinite. If the correlation length is finite, a depinning If f>f_, the mean first-passage time is a monotone decreas-
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9(x)
3l - ]
o p——
&
& T
T L
1 FIG. 2. Part of a sample path for generalized kangaroo disorder
1 2 /f 3 with w_1(g) =W 1(g).

FIG. 1. Dependence GF/T, on f/f, for Gaussian disorder with Condition (3.23 holds if and only ifr(v) -0 asv—o.

r(u)=r(0)exp(w\) and ¢=0.1 (a), =1 (b). (Note that this a weaker condition than requiring a finite
correlation length for the disorderlf the correlation func-

ing function off that tends to zero as—. To illustrate the tion of the Gaussian disorder decays to zero as distance goes
behavior of T as a function off, we consider Gaussian dis- to infinity, then the mean first-passage time is self-averaging,
order with r(u)=r(0)expu\). In this case, K(z) and the disorder average is representative for a single real-
=2r(0)\[z—A+\ exp(—2Z/\)], and f,=r(0)\/A. The de- Ization.
pinning threshold value of is directly proportional to the
correlation Iengtm, and Eq.(3.4) yiE|dS IV. KANGAROO DISORDER

noise and quenched disorder causes the depinning transition,

o f f T in further insight into how the interpl ft |
T:Tof dxexp‘—x+T°x—<p+<pexp{—éx], o gain further insight into how the interplay of tempora
0

(3.19  We consider a class of stepwise constant random functions
in Fig. 1 for two values of the parameter. a pair of probability densities: the jump densjiy(s) that a
hand side of Eq(2.26) is given by adjacent steps have different statistics, we index both prob-
. (319 lows. If the realization has a jump at=x; and is in statey’
The value ofg(x) is constantg, on the interval ; ,x; +s],
theng(x) is the ordinary kangaroo process.
exp{—(1/A) f§9(x)dx}. First consider realizations of the dis-
for the left-hand side of E¢2.26) we obtain
that (iii) have a valugy. Those realizations occur with prob-

that are generalizations of the kangaroo pro¢2ds These
wheregp=f \/A. The dependence df/ T, on f/f. is shown random functions are homogeneous, and they are defined by
To conclude this section, we verify explicitly that condi- step has a lengty and the probability density,(g) that the
tion (2.26 holds for Gaussian disorder. In this case the right-step has a constant valge To allow for the possibility that
5 ability densities byy, with y==*1. Realizations of this gen-
1y 1 eralized kangaroo procegsee Fig. 2 are constructed as fol-
exp, — x g(é€)dé; | =ex pK(z)
-z
/ before the jump, then the next jump occursxatx;+s,
SinceexdG(w,y,y',2)]=exdGXw,y,y',2)/2], and where the probability density of is p,(s) with y=—1v".
- 2z z and the probability density ofj is given by w,(g). If
Gz(w,y,y',z)=EJOdXJodX’ r(y—y'+x-x’) w_1(9)=wW,(g) and if p_,(S)=p.1(S) = (LI\)exp(—g\),
2 To determine the mean first-passage time for kangaroo
+ —2K(Z), (3.20 disorder, we must evaluate the disorder average of
A
order that(i) have no jump in the interval (8), i.e., the right
edgex, of the step is larger thag that(ii) are of typey; and
2L 1 i
2 R il . _ abilit
) (a),z,L)—LZJO dvexp{Az[K(z)JrI‘(v,z)]}(L v), y
(3.21

d\/\/g=PyWy(g)dgf dsp,(s). 4.1
where z

F(v;z)zjodxfodx’r(v+x—x’). (3.22 Here

-1
(4.2

fwds SZ p,(s)
0 Y

Therefore, conditior{2.26) is equivalent to P,= JO dssp(s)

L
lim 32 dvexdI'(v;z)/A%](L—v)=1. (3.23 is the probability that a point belongs to a step of type,
0 and

L—oo
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- » 1 n+1 n
py(S)=L dr—p,(r) (4.3 dW2=P, H dgiw(_1)i-1,(0;) )(H dsip_1)-1,(S)
is the probability density that,=s ~ °°
The probabilityd W? that on the interval (@) (i) the ran- X ds;p,(sy) L HdSp(*l)”v(S)’ (4.4
dom forceg(x) hasn jumps at pointss; belonging to the "
infinitesimal intervalds (i=1, ... n), (i) the first step is where s, ;=z—s;—S,—---—5,. Since the probabilities

of type vy, and(iii) g(x) =consie (g; ,0;+dg;), is given by  dW} anddW; satisfy the normalization condition

|

7 f .../dW;’=1, (4.5)

Z]odw + i

é\g

n=1 50520  sn20
R
s1+...+8n <z
and since
n+1
J g(&)dé¢= 2 gisi., (4.6)
we obtain

[ [o2] 1 n+l
'*'Z / . / dW,l exp [—Z Zgzsz] . (4.7)
T n=l" —o0 8120 sn20
N e
S1+..+sn<z

E{ By e [T ds [ dgun(olps) e [-9 +1 }
+i07dz7...7/ /dW"exp[——nfg,s, _]} s

o0 -0 3,20 3n 20
N e

81+...+3n <2

Let us call the second term of the right hand side of @), Y, . Using thes function 6(z— E””s) we can rewrite this as

N I N fdww( s ) p[ 1Y s 2

* o 0 0 o0 1 n+l
S [esewed -+ @ns| 49
|
Substituting Eq.(4.4) into Eq. (4.9 and using the simple oz
identity Y,=P,G_,R YZ RCIRCI4+PLG yRyk; RIRE
* (4.1)

D A= ag 1t X ag, (4.10
A= =y ey

we find where
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o) 0 » g+f
GyE jo deZ dSJﬁxdg Wy(g)py(s)eX _ TZ '

(4.12

“as| [ g+f ]

Efo dsfixdg Wy(g)py(S)eXp-—TS-,
(4.13

R,=| as| = [ g+f ]

R,= fo dsf_mdg Wy(g)py(s)eXp_—Ts_.
(4.14

Using EQq.(4.11) in the expression for the disorder-averaged

mean first-passage timi&q. (4.8)], and defining

o o0 o0 - g+f
Ef dzf dsf dgw,(9)p,(s)exg — ——2|,
0 z - A

for generalized kangaroo disorder we obtain

(4.195

~ B k—1pk—1
G,+R/(G_ + GyR_y)g1 REIRSS

L
_KZY P,

(4.16
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g(z)

FIG. 3. Part of a sample path for dichotomous disorder.

)\+1+7\—1f
eX _T .

The equality in Eq(4.18 holds if and only iff (h) is a linear
function or h=const. This implies that fon ,;+X\_;>0,
Eq. (4.2]) is reduced to the strict inequality

R, iR_;= (4.21

Nt h
Lf} (4.22

R+1R1>exr{— A

(The caser .1 +\_;=0 is singular and is considered in Sec.
IV B.) Strict inequality(4.22 implies that ifR,;R_;<<1 for

The mean first-passage time for generalized kangaroo diso@- certain value of, then there exists a valug such that as

der changes fronT=w to T<x, i.e., the depinning transi-
tion occurs, asR,R_,=R,;R_; changes fromR, R_;

f is decreased below this value, the conditRn;R_;<1
ceases to hold. In order words, for kangaroo disorder the

>1toR, ;R_;<1. For the latter case, i.e., when the particleparticle always experiences a pinning transition fade-

is not pinned, Eq(4.16 simplifies to
L ~ ~ G_,+G,R_,
T=x Ey P,

TRR L @17

We find a lower bound foR, ;R_; using the Jensen in-

equality[23]
Mp{f(h)}=f(Mp{h}). (4.18
Here h is a random variable with probability densip(h),

f(h) is a convex function oh, andM{f(h)} is the average,
or mathematical expectation, i.e,

M= [ dh fp(h. 419

With N, =M{{s} and g,=M¢{g}, from Egs. (4.13 and
(4.18 we obtain

S
it
—oxp - 21

The conditiong(x)=0 implies thatg, N\ . 1+g_1\ _1=0,
and Eq.(4.20 yields

(4.20

creases. The third case, which occurs for Gaussian disorder,
is not realized. We now consider some instructive examples
of kangaroo disorder.

A. Dichotomous disorder

The generalized kangaroo process reduces to a random
telegraph signal or Markovian dichotomous no[gd], if
Wy(g)z 8(g— ygo) _and py(s)'z (/) exp(=9/N). A_ samp_le
path is shown in Fig. 3. Straightforward calculations yield

A
Ry A a(fr200)" 4.23
G oA 4.2

Y A+NF+ygo)’ 4.29

- A A(f+ ygo)
Ry XYFI;&&W{1+'——7T——', (4.25

- A A2 N+
G, - 2In[1+ ( Ayg")} (4.26

if A+X\(f—gp)>0. We rewrite these expressions in a more
compact form by introducing/=\f/A andp=2Agy/A:

j-_pln(l-l- oxp), (4.27
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3 9(z)
(=]
Q i
&~
21 z
1 FIG. 5. Part of a sample path for prefractal disorder with;
0 >N_q.
FIG. 4. Dependence of/T, on o for dichotomous disorder B. Fractal disorder

with p=1 (a) and p=1.5 (b). In the first case, the particle moves  Disorder often has a self-similar or fractal structure
with assistance of the temporal noise if 0.4l#%<1, and in the  [25 26. Here we study a simple example of fractal disorder

second case does so if 0.803<1.5. arising from the kangaroo process defined by
A N = Jl = ! o\ 1]
G.1=\R.q, étlz —— 2|n(1+0'ip). W+l(g)_ (g)v W—l(g)_i[ (g_gO)+ (g+90)]7
(4.29
1 S
If R,;R_;<1, the mean first-passage time is finite, and is P+1(S)= )\—ﬂex L (4.33
given by - -

A realization of such a process, which we call prefractal

op 1+o+p disorder, is shown in Fig. 5. Fak+X_4(f—gg)>0, Egs.
T=T In(1+o+p) 4.12—(4.1H yield
C 21 20— p2| (ot p)? P (4.12-(4.19 y
1+0._p 0.2 b 1 R .— 1+o_

T o TR T (429 B S
. " : : ~ 1
sinceP, ;=P_;=1/2. The conditiorR, ;R_;<1 is equiva- R+1=0_—|n(l+a'+),

"

lent to o2+ 20— p?>0, or o>—1+/1+p2. This implies
that for dichotomous quenched disorder the particle moves

for forces larger than the threshold value R, ) In(1+o_+p_)

:2(0',+p,
fo=—AN+(A/N)Z+g2. (4.30
t+———In(l+o_—p_),

2(o_—p-)
The depinning threshold valuk is a nonlinear function of (4.39
\, which goes tof.=(g2/2A)A as \—0, and tof.=g, Gi1=A:Riq, G_o;=M_;R_g,
—A/N as\A—x. As expected, the particle moves for any
bias forcef that exceeds the magnitude of the disorder forces 5 Mg Ny

0o- However, even if is less thargy, the particle can avoid G+1=———1In(1+ o),

being pinned and move with assistance from the temporal o o
noise. This statement is illustrated in Fig. 4, where the de-
pendence off/Ty on o is shown forp=1 and 1.5. Forf _ A_jo_ A_q
<(o, the depinning threshold in terms of the white noise C1=—5——— 2In(lﬂL o_+p_)
intensity is given by o-—p> 2(o-+p-)
A1 In(1+ )
A ———=In o_—p_).
Ao=57 (85— 7). (4.3) 2(0-~p-)*

Hereo.=M\..f/A andp_=\_1g9o/A. Taking into account
This expression shows that the depinning threshold value d®, ;=1—-P_;=\,;/(A, 1+ \_4), we obtain for the mean
the noise intensity is directly proportional to the correlationfirst-passage timgeq. (4.17)] in the case of prefractal disor-
length of the quenched disorder. der
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p2(1+o,)In(l+o.)

0 (0, +0 )% —p?)

0(0'++(r_)[(1+ o o to_+oo )—(1+0,)p?]

To o_p o (l+o_—p )t+to_ J(l+o_+p)In(l+o_+p_)

2 (g0 ) o +p ) A+ )01+ +0.0)—(1+0,)p%]

To o_p_ o (l+o_+p )+to_J(l+o_—p )In(l+o_—p_)

2 (g0 ) o —p ) (140 N o +o_+oro)—(1+o)pt]

Equation(4.35 holds if R, {R_1<1, i.e., if

(1+o ) oi+o_+o,o)>(1+0,)p2.

(4.36

We now consider the case of fractal disorder wherg
=I(A_1/D)% go=9(I/x_,)¢, with A\_;—0 and O<a<1.
(Herel andg are parameters which have dimensions. of,
and g, respectively. To obtain a nontrivial limit for the
disorder force, we impose>0. The random set on the

axis defined by the conditiog(x) # 0 is a fractal set, and its

Hausdorff or fractal dimension i@, = «. This follows from
the definition ofdy,

In(S/\ _
dy= lim (Sh-1)

\ 1o INCIN ) (439

whereS is the average total length of the intervals for which

g(x)#0 in some intervalS on the x axis. The average
lengths of the intervals witlg(x) =0 and withg(x)#0 are
Ny1 and N_,, respectively. ThereforeS=S\ /(A4
+X\_,), and forn_;—0 we haveS~\17%; Eq. (4.37) then
yieldsdy=a.

For A _;—0, condition(4.36) holds if (i) 2—2e—a>0,
or (ii) 2—2e—a=0 andf>f,. Heref,=g?l/A is the depin-
ning threshold. In the first case, EGL.35 simplifies toT
=Ty, and in the second case To=L/(f—f;) for f>f;. If
2—2e—a<0, thenT =0 for all values off. We conclude that
if e<1—al2, the particle moves for any nonvanishing fofce

(4.39

<gA/A. If the fractal disorder forces go to infinity too fast,
i.e., e>1—al2, the particle is always localized by the fractal
disorder.

V. CONCLUSIONS

We have used the mean first-passage time formalism to
obtain exact analytical results for the depinning transition of
an overdamped particle in a random force field. This formal-
ism is applicable if the lower boundary of the state space is a
natural boundary. We have shown that this is the case if the
correlation function of the random force decreases with dis-
tance. A finite correlation length of the quenched disorder is
a sufficient, but not necessary, condition fere to be natu-
ral. We have also shown that a finite correlation length is a
sufficient, but not necessary, condition for the mean first-
passage time to be self-averaging in the limit of infinite sys-
tem size. For Gaussian disorder, it turns out that a finite
correlation length is a necessary condition for the particle to
undergo a depinning transition. If the correlation length is
infinite, then the particle is localized on average, no matter
how strong the constant bias force.

While Gaussian disorder was studied befpre9d], exact
results for other types of random forces were not known. The
main contribution of this work is the derivation of exact
expressions for the depinning threshold in the case of gener-
alized kangaroo disorder. A broad variety of disorders can
approximately be described by such disorder. For example, it
allows us to model random fractal disorder. We have shown
that for kangaroo disorder, the particle will always experi-
ence a pinning transition as the constant bias force decreases.

In this case, the fractal disorder forces do not tend to infinityPiecewise constant random forces on average will always
fast enough on the fractal to pin the particle. A depinninglocalize the particle for sufficiently weak external forcing, in
transition occurs ife=1—a/2; the particle is pinned fof contrast to Gaussian disorder.
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