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Mean first-passage time for an overdamped particle in a disordered force field
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Department of Mechanics and Mathematics, Sumy State University, 2, Rimskiy-Korsakov Street, 40007 Sumy, Ukraine
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We derive a rigorous expression for the mean first-passage time of an overdamped particle subject to a
constant bias in a force field with quenched disorder. Depending on the statistics of the disorder, the disorder-
averaged mean first-passage time can undergo a transition from an infinite value for small bias to a finite value
for large bias. This corresponds to a depinning transition of the particle. We obtain exact values for the
depinning threshold for Gaussian disorder and also for a class of piecewise constant random forces, which we
call generalized kangaroo disorder. For Gaussian disorder, we investigate how the correlations of the random
force field affect the average motion of the particle. For kangaroo disorder, we apply the general results for the
depinning transition to two specific examples, viz., dichotomous disorder and random fractal disorder.

PACS number~s!: 05.40.2a, 05.10.Gg, 05.45.Df
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I. INTRODUCTION

The motion of an overdamped particle in a potential mo
els a broad variety of transport phenomena in physi
chemical, and biological systems. Ratchetlike mechanis
the motion of a particle in an asymmetric periodic potent
have been proposed to explain the transport of large m
ecules in cells and through membranes@1#. The asymmetric
potential can rectify symmetric nonequilibrium fluctuation
and give rise to fluctuation-induced transport@2#, which may
be used for the continuous sorting of macromolecules@3#.
The transport properties are strongly perturbed by the p
ence of frozen disorder or defects in the ratchet potential@4#.
The motion of an overdamped particle in a nonperiodic d
order potential is of interest in its own right. It provides
model for the dynamics of dislocations in solids and of d
main walls in random-field magnets, for diffusion of te
particles in porous media or turbulent flows, for electron
transport in amorphous media, and for other transport p
nomena in random media@5,6#. It has also been used as
simple phenomenological model of glassy dynamics@7,8#.

A distinctive feature of the dynamics in systems with ra
dom potentials, or quenched disorder, is the existence of
depinning transition. For certain statistics of the quench
disorder, the particle on average does not move belo
threshold value of the external driving force, whereas
moves for a force above this value. In this paper, we st
how thermal fluctuations interact with various types
quenched disorder, and derive expressions for the depin
threshold. The effects of randomness in driven systems
often nonintuitive, and it is therefore desirable to investig
model systems for which exact analytical results can be
tained. Previous studies investigated the motion of an o
damped particle in the presence of a Gaussian disorder
tential @7,9#. We extend those studies by explorin
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specifically how the functional form of the disorder correl
tions effects the depinning transition. We then focus on
class of non-Gaussian random forces for which the dep
ning transition can be characterized analytically.

Earlier publications considered mainly spatially discre
situations, where the particle moves on a lattice@5,10–14#.
The dynamics of the particle is described by a random w
with random hopping rates. We adopt a spatially continuo
description in terms of a Langevin equation with quench
disorder forces. This point of view is better suited to situ
tions where the disorder force field, or disorder potential
well characterized, and hopping rates are a derivative qu
tity. Studies of random walks in random media@12–14# and
of Langevin equations with quenched disorder@9,15–17#
have shown that the mean first-passage time formalism i
effective tool to characterize the depinning transition. T
formalism has the advantage that it does not rely on
periodic continuation of the random potential used
@7,11,18#.

We consider a one-dimensional disorder potential. T
equation of motion of an overdamped particle with coor
nate x in the presence of a random potentialU(x) and a
constant external forcef is given by the Langevin equation

ẋ~ t !5g„x~ t !…1 f 1h~ t !, ~1.1!

whereg(x)52dU(x)/dx. Without restriction of generality,
we considerf to be positive, i.e., the particle is driven to th
right. The quenched disorder is described by the rand
force g(x), which we assume to be a homogeneous, i
translationally invariant, random function with mean val
zero,

g~x!50, ~1.2!

and correlation functionr (u),

g~y!g~x!5r ~ uy2xu!, ~1.3!
3311 ©2000 The American Physical Society
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with r (0).0 andr (`)50. Here the overbar denotes ave
aging with respect to the random force fieldg(x). The defi-
nition of g(x) implies that

U~y!2U~x!52E
x

y

g~s!ds ~1.4!

and

@U~y!2U~x!#25E
x

yE
x

y

g~s!g~v !ds dv

5E
x

yE
x

y

r ~s2v !ds dv

52E
0

uy2xu
r ~u!@ uy2xu2u#du. ~1.5!

Defining the correlator of the potential as usual byK(z)
[@U(z1x)2U(x)#25@U(z)2U(0)#2, we obtain

K~z!52E
0

uzu
r ~u!@ uzu2u#du. ~1.6!

Note that the potentialU(x), as an integral over a homoge
neous random force, is itself not a homogeneous rand
function. The probability density of the random forceg(x)
will be specified below. The particle is subject not only
spatial random disorder, but also to temporal random no
We assumeh(t) to be Gaussian white noise,

^h~ t !&50, ~1.7!

^h~ t !h~ t8!&52Dd~ t2t8!, ~1.8!

whered(t) is thed function, and̂ & denotes averaging with
respect to the noiseh(t). If the noise represents therm
equilibrium fluctuations, the white noise intensityD is equal
to the absolute temperature of the heat bath.

We characterize the dynamical behavior of the particle
the disorder-averaged mean first-passage timeT5^t(0)&,
wheret(0) is the time a particle starting atx(0)50 spends
in the interval (2`,L) before reaching the positionL.0 for
the first time, i.e.,t(0) is the so-called first-passage time. W
choose the lower boundary to be at minus infinity to av
finite-size effects, and to obtain the depinning threshold
the thermodynamic limit. The depinning transition corr
sponds to the transition fromT5` to T,`.

This paper is organized as follows. We derive the gene
expression for the mean first passage timeT in Sec. II. The
role of the functional form of the correlations for the case
Gaussian disorder is analyzed in Sec. III. We consider g
eralizations of the kangaroo process, i.e., stepwise cons
random forces, and derive analytical results for the depinn
transition in Sec. IV. We conclude with a discussion of o
results in Sec. V.

II. MEAN FIRST-PASSAGE TIME

We denote a realization, or sample path, of the rand
force g(x) by v: g(v,x). The solution of the Langevin
equation
m

e.

y

n
-

al

f
n-
nt
g
r

m

ẋ~v,t !5g„v,x~ t !…1 f 1h~ t ! ~2.1!

is a Markovian diffusion process. Lett(v,x) be the time that
a particle starting atx(v,0)5x with a<x<b leaves the in-
terval (a,b) for the first time. For a given realizationv of
the random force, the mean first-passage timeT(v,x)
5^t(v,x)& obeys the equation@19,20#

@g~v,x!1 f #
dT~v,x!

dx
1D

d2T~v,x!

dx2
521. ~2.2!

Since we are interested in the time when the particle reac
the upper boundaryb of the interval for the first time, no
matter how often it has reached the lower boundarya, we
considerb to be an absorbing barrier anda to be a reflecting
barrier. The solution of Eq.~2.2! with these boundary condi
tions is given by@20#

T~v,x!5
1

D E
x

b dy

c~y!
E

a

y

c~z!dz, a,b, ~2.3!

where

c~y!5expH 1

D E
a

y

@ f 1g~v,j!#djJ . ~2.4!

As mentioned in Sec. I, in our caseb5L anda52`. Equa-
tion ~2.3! remains valid asa goes to2`, provided that2` is
a natural boundary@21# of the Markovian diffusion process
x(v,t) @19#. A diffusion process reaches a natural bounda
with probability zero, even if time goes to infinity. A natura
boundary has no effect on the mean first-passage time,
the result obtained for the depinning threshold is free
finite-size effects.

The boundarya52` is natural, if@21#

L1~2`!5E
2`

b

f~x!dx5`, ~2.5!

where

f~x!5expH 2
1

D E
b

x

@ f 1g~v,z!#dzJ . ~2.6!

From Eq.~2.6! we obtain

f~x!5expH f

D
~b2x!F11

1

f ~b2x!
E

x

b

g~v,z!dzG J , ~2.7!

and therefore

Prob$L1~2`!5`%

5ProbH lim
x→2`

S 11
1

f ~b2x!
E

x

b

g~v,z!dzD>0J . ~2.8!

Let us define the random variableG(x;b) as

G~x;b![
1

b2x Ex

b

g~v,z!dz. ~2.9!
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The strong law of large numbers@22# implies that

lim
x→2`

G~x;b!5g~z!50 ~almost surely!, ~2.10!

if and only if

lim
x→2`

G~x;b!250. ~2.11!

Since

G~x;b!5
1

b2x
@U~x!2U~b!#, ~2.12!

Eq. ~2.11! is equivalent to

lim
x→2`

1

~b2x!2
K~b2x!50. ~2.13!

If the correlator of the potential is given by a power law, i.
K(z);zh for z→`, then the boundarya52` is natural
and Eq.~2.3! holds, if h,2. Defining the correlation length
l of the random forceg(x) in the usual way,

l[
1

r ~0!
E

0

`

ur ~u!udu, ~2.14!

we find that a finite correlation length of the disorder force
a sufficient, although not necessary, condition fora52` to
be natural.

From Eq.~2.3! we obtain

T~v,0!5
1

D E
0

L

dy expH 2
1

D E
2`

y

@ f 1g~v,j!#djJ
3E

2`

y

dzexpH 1

D E
2`

z

@ f 1g~v,j!#djJ
5

1

D E
0

L

dyE
2`

y

dzexpH 2
f

D
~y2z!

2
1

D E
z

y

g~v,j!djJ . ~2.15!

Using the transformation of variablesx5( f /D)(y2z), we
find

T~v,0!5
1

f E0

L

dyE
0

`

dx expH 2x2
1

D E
y2(D/ f )x

y

g~v,j!djJ ,

~2.16!

and withz5( f /D)(j2y)1x,

T~v,0!5
1

f E0

L

dyE
0

`

dx expH 2x2
1

f E0

x

g„v,~D/ f !z

1y2~D/ f !x…dzJ . ~2.17!

Averaging over the disorder, we obtain the mean fir
passage time
,

-

T5T~v,0!

5
1

f E0

L

dyE
0

`

dx exp~2x!

3expH 2
1

f E0

x

g„v,~D/ f !z1y2~D/ f !x…dzJ , ~2.18!

Since g(x) is a homogeneous random function, the me
first-passage time can be written as

T5T0E
0

`

dx exp~2x!expH 2
1

f E0

x

g~Dz/ f !dzJ , ~2.19!

where we have dropped the argumentv, andT05L/ f is the
mean first-passage time forg(x)[0. The Jensen inequality
@23# @see also Eq.~4.18!#, implies that

expH 2
1

f E0

x

g~Dz/ f !dzJ
>expH 2

1

f E0

x

g~Dz/ f !dzJ 51. ~2.20!

ThereforeT>T0, i.e., quenched disorder always increas
the mean first-passage time.

Finally, using the transformations of variablesx5 f z/D
andj5Dz/ f in Eq. ~2.19!, we obtain the general expressio
for the mean first-passage time:

T5
L

D E
0

`

dzexpS 2
f

D
zDexpH 2

1

D E
0

z

g~j!djJ ~2.21!

or

T5
L

D E
0

`

dzexpS 2
f

D
zDexpH 1

D
@U~z!2U~0!#J . ~2.22!

This result is equivalent to the expression for the inverse
the disorder-averaged velocity in Ref.@7# and agrees with the
result for the mean first-passage time in Ref.@9#.

To conclude this section, we derive the condition that
mean first-passage time is self-averaging in the largeL limit,
i.e., that the disorder average is representative for a sin
realization of the quenched disorder. From Eq.~2.16! for the
mean first-passage time for a given realization of
quenched disorder, we obtain

T~v,0!5
L

D E
0

`

dzexpS 2
f

D
zDF~v,z;L !, ~2.23!

where

F~v,z;L !5
1

L E
0

L

dy expH 2
1

D E
y2z

y

g~v,j!djJ . ~2.24!

Comparing Eqs.~2.23! and ~2.21!, we find thatT(v,0) is
self-averaging, and that the intensive quantityT(v,0)/L goes
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to the constantT/L almost surely asL goes to infinity, if
F(v,z;L) is a self-averaging function, i.e., if

lim
L→`

F~v,z;L !

5expH 2
1

D E
y2z

y

g~v,j!djJ ~almost surely!.

~2.25!

@Recall thatg(x) is a homogeneous random function.# The
strong law of large numbers@22# implies that Eq.~2.25!
holds, if and only if

lim
L→`

F2~v,z;L !5S expH 2
1

D E
y2z

y

g~v,j!djJ D 2

. ~2.26!
ni

o

e
ci

ss

e

We have

F2~v,z;L !5
1

L2 E0

L

dyE
0

L

dy8exp@G~v,y,y8,z!#, ~2.27!

where

G~v,y,y8,z!52
1

D E
y2z

y

g~v,j!dj2
1

D E
y82z

y8
g~v,j!dj.

~2.28!

If the random force field has a finite correlation length, th
the dominant contribution to the integral on the right-ha
side of Eq.~2.27! comes from regions where the two terms
G(v,y,y8,z) are uncorrelated. Therefore
lim
L→`

F2~v,z;L !5 lim
L→`

1

L2 E0

L

dyE
0

L

dy8 expH 2
1

D E
y2z

y

g~v,j!djJ expH 2
1

D E
y82z

y8
g~v,j!djJ

5S expH 2
1

D E
y2z

y

g~v,j!djJ D 2

, ~2.29!
e
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and the mean first-passage time is self-averaging. A fi
correlation length is a sufficient condition forT(v,0) to be
self-averaging, but not a necessary condition as we will sh
explicitly for Gaussian disorder at the end of Sec. III.

III. GAUSSIAN DISORDER

As a first application of Eq.~2.21!, we consider the cas
of Gaussian disorder. The evaluation of the average is fa
tated by the following relation. IfG(x) is a Gaussian random
function, then

exp$G~x!%5exp$~1/2!G~x!2%. ~3.1!

The integral of a Gaussian random function is itself Gau
ian, and

expH 2
1

D E
0

z

g~j!djJ 5expH 1

2D2 E0

z

djE
0

z

dj8g~j!g~j8!J
5expH 1

D2 E0

z

dv r ~v !~z2v !J
5expH 1

2D2
K~z!J . ~3.2!

Thus, for Gaussian disorder, the mean first-passage tim
given by
te

w

li-

-

is

T5
L

D E
0

`

dzexpH 2
f

D
z1

1

D2 E0

z

dv r ~v !~z2v !J ~3.3!

5
L

D E
0

`

dzexpH 2
f

D
z1

1

2D2
K~z!J . ~3.4!

According to Eqs.~3.3! and ~3.4!, the mean first-passag
time is finite, i.e., no pinning occurs, if

f D. lim
z→`

1

z E0

z

dv r ~v !~z2v !5 lim
z→`

1

2z
K~z!. ~3.5!

SinceK(z)>0, the following cases are possible.
~1! If lim

z→`
K(z)/2z5`, thenT5` for any f. The par-

ticle is always pinned, no matter how large the driving for
f.

~2! If lim
z→`

K(z)/2z5x(0,x,`), then T5` for f

,x/D, and T,` for f .x/D. The particle experiences
depinning transition with the threshold valuef c5x/D. If f
5x/D, then the mean first-passage time will be finite
infinite, depending on the form of the second term in t
asymptotic expansion ofK(z).

~3! If lim
z→`

K(z)/2z50, thenT,` for any f. The par-

ticle will always move, even for a small but nonvanishin
driving force f.

To understand the physical significance of these th
cases, we determine the functional form of the correlat
functionr (u) that gives rise to each case. SinceK(z)>0, the
function r (u) must satisfy the inequality
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E
0

z

r ~u!du>
1

z E0

z

ur~u!du ~3.6!

for any z>0. This inequality implies that

R[E
0

`

r ~u!du>0. ~3.7!

We begin by considering the case when the correlation fu
tion of the random force fieldg(x) decays monotonically
with distance. Ifr (u)>0 for u>0, then

1

z E0

z

ur~u!du5
a~z!

z E
0

z

r ~u!du, ~3.8!

where 0,a(z),z, and inequality~3.6! is always satisfied.
In this case, lim

z→`
K(z)/2z5` if R5`, and

lim
z→`

K(z)/2z5x if R5x. Indeed, according to Eqs.~1.6!

and ~3.8!, we have

K~z!

2z
5S 12

a~z!

z D E
0

z

r ~u!du. ~3.9!

Since 0,a(z),z, it follows that lim
z→`

K(z)/2z5` if

R5`. If 0,R,`, then lim
u→`

ur(u)50,

lim
z→`

1

z E0

z

ur~u!du50, ~3.10!

and lim
z→`

K(z)/2z5R. Note that forr (u)>0 the third case
is not realized.

We now consider the case that the correlations in the
dom force field decay in an oscillatory manner. We limit o
study to those situations where the correlation functionr (u)
does not exhibit further sign changes beyond a certain
tance c.0. As for monotonically decreasing correlatio
functions, the first case is realized ifR5`. Since

K~z!

2z
5E

0

z

r ~u!du2
1

z E0

z

ur~u!du

5E
0

c

r ~u!du2
1

z E0

c

ur~u!du1S 12
b~z!

z D E
c

z

r ~u!du,

~3.11!

wherec,b(z),z, and since the conditionR5` implies

E
c

`

r ~u!du5`, ~3.12!

we obtain lim
z→`

K(z)/2z5`, neglecting the first two terms

in Eq. ~3.11! as z→`. If 0<R,`, then lim
u→`

ur(u)50,

Eq. ~3.10! holds, and therefore lim
z→`

K(z)/2z5R.

These results show that for a Gaussian random force
whose correlation function either decreases monotonicall
does not change sign beyond somec.0, the particle is al-
ways pinned, if the correlation length of the quenched dis
der is infinite. If the correlation length is finite, a depinnin
c-

n-
r

s-

ld
or

r-

transition occurs at a finite threshold value for the drivi
force f, unless regions of positive and negative correlatio
in the force field are exactly balanced. In the latter case,
particle will move for any nonvanishing driving force.

The first case, whereR5`, corresponds to a power-law
behavior for the correlator of the potential,K(z);zh as z
→` with 1,h,2, since

K~z!;zE
c

z

r ~u!du, ~3.13!

and r (`)50. Thus the boundary at minus infinity is, as r
quired, a natural boundary. For the second case, whe
,R,`, we findK(z)52zR asz→`, or h51. This case is
realized for a broad class of random forcesg(x) that have a
finite correlation length. In particular, the Sinai model, whe
the potential is a Wiener process and the random force fi
is d correlated, belongs to this class. For the third case, wh
R50, we obtainh,1. This case is realized for the class
random forcesg(x) that have a finite correlation length an
satisfy the conditionR50. A specific example is a random
force fieldg(x) with the correlation function

r ~u!5r ~0!
12~k22!u/d

~11u/d!k
. ~3.14!

Hered is a parameter that has the dimension of length, a
k.2. The conditionk.2 follows from the conditionl,`.
For random forces with correlation functions of this form
we obtain

K~z!52d2r ~0!H 1

k23 F12
1

~11z/d!k23G
2

1

k22 F12
1

~11z/d!k22G J ~3.15!

if kÞ3, and

K~z!52d2r ~0!F ln~11z/d!1
1

11z/d
21G ~3.16!

if k53. Equation ~3.15! shows thath50 for k.3, and
h532k for 2,k,3. If k53, then the correlator diverge
logarithmically:K(z); ln(z/d) asz/d→`.

Note that for Gaussian disorder with a finite correlati
length, the particle is always pinned in the absence of th
mal noise. The certain pinning in a noiseless system
caused by realizations withg„v,x8(v)…52 f with x8(v)
P(0,L), which occur with nonzero probability. For such r
alizations, the disorder force overcomes the external b
force, and the particle will be trapped, if the noise intensityD
vanishes. Therefore the mean first-passage time is alw
infinite for Gaussian disorder in the absence of noise;
depinning transition occurs without the help of the tempo
noise. For finite noise intensity and Gaussian disorder wit
finite correlation length, the depinning transition occurs
f 5 f c , where

f c5R/D. ~3.17!

If f . f c , the mean first-passage time is a monotone decr
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ing function off that tends to zero asf→`. To illustrate the
behavior ofT as a function off, we consider Gaussian dis
order with r (u)5r (0)exp(2u/l). In this case, K(z)
52r (0)l@z2l1l exp(2z/l)#, and f c5r (0)l/D. The de-
pinning threshold value off is directly proportional to the
correlation lengthl, and Eq.~3.4! yields

T5T0E
0

`

dx expH 2x1
f c

f
x2w1w expF2

f c

f w
xG J ,

~3.18!

wherew5 f cl/D. The dependence ofT/T0 on f / f c is shown
in Fig. 1 for two values of the parameterw.

To conclude this section, we verify explicitly that cond
tion ~2.26! holds for Gaussian disorder. In this case the rig
hand side of Eq.~2.26! is given by

S expH 2
1

D E
y2z

y

g~j!djJ D 2

5expF 1

D2
K~z!G . ~3.19!

Sinceexp@G(v,y,y8,z)#5exp@G2(v,y,y8,z)/2#, and

G2~v,y,y8,z!5
2

D2 E0

z

dxE
0

z

dx8 r ~y2y81x2x8!

1
2

D2
K~z!, ~3.20!

for the left-hand side of Eq.~2.26! we obtain

F2~v,z;L !5
2

L2 E0

L

dv expH 1

D2
@K~z!1G~v;z!#J ~L2v !,

~3.21!

where

G~v;z!5E
0

z

dxE
0

z

dx8 r ~v1x2x8!. ~3.22!

Therefore, condition~2.26! is equivalent to

lim
L→`

2

L2 E0

L

dv exp@G~v;z!/D2#~L2v !51. ~3.23!

FIG. 1. Dependence ofT/T0 on f / f c for Gaussian disorder with
r (u)5r (0)exp(2u/l) andw50.1 ~a!, w51 ~b!.
-

Condition ~3.23! holds if and only if r (v)→0 as v→`.
~Note that this a weaker condition than requiring a fin
correlation length for the disorder.! If the correlation func-
tion of the Gaussian disorder decays to zero as distance
to infinity, then the mean first-passage time is self-averag
and the disorder average is representative for a single r
ization.

IV. KANGAROO DISORDER

To gain further insight into how the interplay of tempor
noise and quenched disorder causes the depinning trans
we consider a class of stepwise constant random funct
that are generalizations of the kangaroo process@24#. These
random functions are homogeneous, and they are define
a pair of probability densities: the jump densitypg(s) that a
step has a lengths, and the probability densitywg(g) that the
step has a constant valueg. To allow for the possibility that
adjacent steps have different statistics, we index both pr
ability densities byg, with g561. Realizations of this gen
eralized kangaroo process~see Fig. 2! are constructed as fol
lows. If the realization has a jump atx5xj and is in stateg8
before the jump, then the next jump occurs atx5xj1s,
where the probability density ofs is pg(s) with g52g8.
The value ofg(x) is constant,g, on the interval (xj ,xj1s#,
and the probability density ofg is given by wg(g). If
w21(g)5w11(g) and if p21(s)5p11(s)5(1/l)exp(2s/l),
theng(x) is the ordinary kangaroo process.

To determine the mean first-passage time for kanga
disorder, we must evaluate the disorder average
exp$2(1/D)*0

zg(x)dx%. First consider realizations of the dis
order that~i! have no jump in the interval (0,z), i.e., the right
edgexr of the step is larger thanz; that ~ii ! are of typeg; and
that ~iii ! have a valueg. Those realizations occur with prob
ability

dW0
g5Pgwg~g!dgE

z

`

ds p̃g~s!. ~4.1!

Here

Pg5E
0

`

ds s pg~s!F E
0

`

ds s(
g

pg~s!G21

~4.2!

is the probability that a pointx belongs to a step of typeg,
and

FIG. 2. Part of a sample path for generalized kangaroo diso
with w21(g)5w11(g).
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p̃g~s!5E
s

`

dr
1

r
pg~r ! ~4.3!

is the probability density thatxr5s.
The probabilitydWn

g that on the interval (0,z) ~i! the ran-
dom forceg(x) has n jumps at pointssi belonging to the
infinitesimal intervalsdsi ( i 51, . . . ,n), ~ii ! the first step is
of type g, and~iii ! g(x)5constP(gi ,gi1dgi), is given by
dWn
g5PgS )

i 51

n11

dgiw(21)i 21g~gi !D S )
i 52

n

dsip(21)i 21g~si !D
3ds1p̃g~s1!E

sn11

`

dsp(21)ng~s!, ~4.4!

where sn115z2s12s22•••2sn . Since the probabilities
dW0

g anddWn
g satisfy the normalization condition
~4.5!

and since

E
0

z

g~j!dj5 (
i 51

n11

gisi , ~4.6!

we obtain

~4.7!

Using Eq.~4.7!, we can write Eq.~2.21! in the form

~4.8!

Let us call the second term of the right hand side of Eq.~4.8!, Yg . Using thed functiond(z2( i 51
n11si), we can rewrite this as

Yg5 (
n51

` E
0

`

dzE
2`

`

. . . E
2`

` E
0

`

. . . E
0

`

dsn11dWn
gdS z2 (

i 51

n11

si D expF2
1

D (
i 51

n11

gisi2
f z

D G
5 (

n51

` E
2`

`

. . . E
2`

` E
0

`

. . . E
0

`

dsn11dWn
g expF2

1

D (
i 51

n11

~gi1 f !si G . ~4.9!
Substituting Eq.~4.4! into Eq. ~4.9! and using the simple
identity

(
n51

`

an5 (
k51

`

a2k211 (
k51

`

a2k , ~4.10!

we find
Yg5PgG2gR̃g(
k51

`

Rg
k21R2g

k211PgGgR̃g(
k51

`

Rg
k21R2g

k ,

~4.11!

where
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Gg[E
0

`

dzE
z

`

dsE
2`

`

dg wg~g!pg~s!expF2
g1 f

D
zG ,

~4.12!

Rg[E
0

`

dsE
2`

`

dg wg~g!pg~s!expF2
g1 f

D
sG ,

~4.13!

R̃g[E
0

`

dsE
2`

`

dg wg~g! p̃g~s!expF2
g1 f

D
sG .

~4.14!

Using Eq.~4.11! in the expression for the disorder-averag
mean first-passage time@Eq. ~4.8!#, and defining

G̃g[E
0

`

dzE
z

`

dsE
2`

`

dg wg~g! p̃g~s!expF2
g1 f

D
zG ,

~4.15!

for generalized kangaroo disorder we obtain

T5
L

D (
g

PgF G̃g1R̃g~G2g1GgR2g!(
k51

`

Rg
k21R2g

k21G .

~4.16!

The mean first-passage time for generalized kangaroo d
der changes fromT5` to T,`, i.e., the depinning transi
tion occurs, asRgR2g5R11R21 changes fromR11R21
.1 to R11R21,1. For the latter case, i.e., when the partic
is not pinned, Eq.~4.16! simplifies to

T5
L

D (
g

PgF G̃g1R̃g

G2g1GgR2g

12RgR2g
G . ~4.17!

We find a lower bound forR11R21 using the Jensen in
equality @23#

Mh$ f ~h!%> f ~Mh$h%!. ~4.18!

Here h is a random variable with probability densityp(h),
f (h) is a convex function ofh, andMh$ f (h)% is the average,
or mathematical expectation, i.e,

Mh$ f ~h!%5E dh f~h!p~h!. ~4.19!

With lg5Ms
g$s% and gg5Mg

g$g%, from Eqs. ~4.13! and
~4.18! we obtain

Rg5Mg
g H Ms

gH expF2
g1 f

D
sG J J

>Mg
gH expF2

g1 f

D
lgG J

>expF2
gg1 f

D
lgG . ~4.20!

The conditiong(x)50 implies thatg11l111g21l2150,
and Eq.~4.20! yields
r-

R11R21>expF2
l111l21

D
f G . ~4.21!

The equality in Eq.~4.18! holds if and only iff (h) is a linear
function or h5const. This implies that forl111l21.0,
Eq. ~4.21! is reduced to the strict inequality

R11R21.expF2
l111l21

D
f G . ~4.22!

~The casel111l2150 is singular and is considered in Se
IV B.! Strict inequality~4.22! implies that ifR11R21,1 for
a certain value off, then there exists a valuef c such that as
f is decreased below this value, the conditionR11R21,1
ceases to hold. In order words, for kangaroo disorder
particle always experiences a pinning transition asf de-
creases. The third case, which occurs for Gaussian diso
is not realized. We now consider some instructive examp
of kangaroo disorder.

A. Dichotomous disorder

The generalized kangaroo process reduces to a ran
telegraph signal or Markovian dichotomous noise@21#, if
wg(g)5d(g2gg0) and pg(s)5(1/l)exp(2s/l). A sample
path is shown in Fig. 3. Straightforward calculations yield

Rg5
D

D1l~ f 1gg0!
, ~4.23!

Gg5
Dl

D1l~ f 1gg0!
, ~4.24!

R̃g5
D

l~ f 1gg0!
lnF11

l~ f 1gg0!

D G , ~4.25!

G̃g5
D

f 1gg0
2

D2

l~ f 1gg0!2
lnF11

l~ f 1gg0!

D G ~4.26!

if D1l( f 2g0).0. We rewrite these expressions in a mo
compact form by introducings5l f /D andr5lg0 /D:

R615
1

11s6r
, R̃615

1

s6r
ln~11s6r!, ~4.27!

FIG. 3. Part of a sample path for dichotomous disorder.
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G615lR61 , G̃615
l

s6r
2

l

~s6r!2
ln~11s6r!.

~4.28!

If R11R21,1, the mean first-passage time is finite, and
given by

T5T0

sr

s212s2r2 F11s1r

~s1r!2
ln~11s1r!

2
11s2r

~s2r!2
ln~11s2r!G1T0

s2

s22r2
, ~4.29!

sinceP115P2151/2. The conditionR11R21,1 is equiva-

lent to s212s2r2.0, or s.211A11r2. This implies
that for dichotomous quenched disorder the particle mo
for forces larger than the threshold value

f c52D/l1A~D/l!21g0
2. ~4.30!

The depinning threshold valuef c is a nonlinear function of
l, which goes tof c5(g0

2/2D)l as l→0, and to f c5g0

2D/l as l→`. As expected, the particle moves for an
bias forcef that exceeds the magnitude of the disorder for
g0. However, even iff is less thang0, the particle can avoid
being pinned and move with assistance from the temp
noise. This statement is illustrated in Fig. 4, where the
pendence ofT/T0 on s is shown forr51 and 1.5. Forf
,g0, the depinning threshold in terms of the white noi
intensity is given by

Dc5
l

2 f
~g0

22 f 2!. ~4.31!

This expression shows that the depinning threshold valu
the noise intensity is directly proportional to the correlati
length of the quenched disorder.

FIG. 4. Dependence ofT/T0 on s for dichotomous disorder
with r51 ~a! and r51.5 ~b!. In the first case, the particle move
with assistance of the temporal noise if 0.414,s,1, and in the
second case does so if 0.803,s,1.5.
s

s

s

al
-

of

B. Fractal disorder

Disorder often has a self-similar or fractal structu
@25,26#. Here we study a simple example of fractal disord
arising from the kangaroo process defined by

w11~g!5d~g!, w21~g!5
1

2
@d~g2g0!1d~g1g0!#,

~4.32!

p61~s!5
1

l61
expS 2

s

l61
D . ~4.33!

A realization of such a process, which we call prefrac
disorder, is shown in Fig. 5. ForD1l21( f 2g0).0, Eqs.
~4.12!–~4.15! yield

R115
1

11s1
, R215

11s2

~11s2!22r2
2

,

R̃115
1

s1
ln~11s1!,

R̃215
1

2~s21r2!
ln~11s21r2!

1
1

2~s22r2!
ln~11s22r2!,

~4.34!
G115l11R11 , G215l21R21 ,

G̃115
l11

s1
2

l11

s1
2

ln~11s1!,

G̃215
l21s2

s2
2 2r2

2
2

l21

2~s21r2!2
ln~11s21r2!

2
l21

2~s22r2!2
ln~11s22r2!.

Heres65l61f /D andr25l21g0 /D. Taking into account
P11512P215l11 /(l111l21), we obtain for the mean
first-passage time@Eq. ~4.17!# in the case of prefractal disor
der

FIG. 5. Part of a sample path for prefractal disorder withl11

.l21.
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T5T0

~s11s2!s2
2 2s1r2

2

~s11s2!~s2
2 2r2

2 !
1T0

r2
2 ~11s1!ln~11s1!

~s11s2!@~11s2!~s11s21s1s2!2~11s1!r2
2 #

1
T0

2

s2r2@s1~11s22r2!1s2#~11s21r2!ln~11s21r2!

~s11s2!~s21r2!2@~11s2!~s11s21s1s2!2~11s1!r2
2 #

2
T0

2

s2r2@s1~11s21r2!1s2#~11s22r2!ln~11s22r2!

~s11s2!~s22r2!2@~11s2!~s11s21s1s2!2~11s1!r2
2 #

. ~4.35!
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Equation~4.35! holds if R11R21,1, i.e., if

~11s2!~s11s21s1s2!.~11s1!r2
2 . ~4.36!

We now consider the case of fractal disorder wherel11

5 l (l21 / l )a, g05g̃( l /l21)e, with l21→0 and 0,a,1.
~Here l andg̃ are parameters which have dimensions ofl61
and g0, respectively.! To obtain a nontrivial limit for the
disorder force, we imposee.0. The random set on thex
axis defined by the conditiong(x)Þ0 is a fractal set, and its
Hausdorff or fractal dimension isdH5a. This follows from
the definition ofdH ,

dH5 lim
l21→0

ln~S̄/l21!

ln~1/l21!
, ~4.37!

whereS̄ is the average total length of the intervals for whi
g(x)Þ0 in some intervalS on the x axis. The average
lengths of the intervals withg(x)50 and withg(x)Þ0 are
l11 and l21, respectively. Therefore,S̄5Sl21 /(l11

1l21), and forl21→0 we haveS̄;l21
12a ; Eq. ~4.37! then

yields dH5a.
For l21→0, condition~4.36! holds if ~i! 222e2a.0,

or ~ii ! 222e2a50 and f . f c . Here f c5g̃2l /D is the depin-
ning threshold. In the first case, Eq.~4.35! simplifies to T
5T0, and in the second case toT5L/( f 2 f c) for f . f c . If
222e2a,0, thenT5` for all values off. We conclude that
if e,12a/2, the particle moves for any nonvanishing forcef.
In this case, the fractal disorder forces do not tend to infin
fast enough on the fractal to pin the particle. A depinni
transition occurs ife512a/2; the particle is pinned forf
tl
,

y

,g̃2l/D. If the fractal disorder forces go to infinity too fas
i.e., e.12a/2, the particle is always localized by the fract
disorder.

V. CONCLUSIONS

We have used the mean first-passage time formalism
obtain exact analytical results for the depinning transition
an overdamped particle in a random force field. This form
ism is applicable if the lower boundary of the state space
natural boundary. We have shown that this is the case if
correlation function of the random force decreases with d
tance. A finite correlation length of the quenched disorde
a sufficient, but not necessary, condition for2` to be natu-
ral. We have also shown that a finite correlation length i
sufficient, but not necessary, condition for the mean fir
passage time to be self-averaging in the limit of infinite s
tem size. For Gaussian disorder, it turns out that a fin
correlation length is a necessary condition for the particle
undergo a depinning transition. If the correlation length
infinite, then the particle is localized on average, no ma
how strong the constant bias force.

While Gaussian disorder was studied before@7,9#, exact
results for other types of random forces were not known. T
main contribution of this work is the derivation of exa
expressions for the depinning threshold in the case of ge
alized kangaroo disorder. A broad variety of disorders c
approximately be described by such disorder. For exampl
allows us to model random fractal disorder. We have sho
that for kangaroo disorder, the particle will always expe
ence a pinning transition as the constant bias force decrea
Piecewise constant random forces on average will alw
localize the particle for sufficiently weak external forcing,
contrast to Gaussian disorder.
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